In order to reduce the computational complexity, most of the video classification approaches represent video data at frame level. In this paper we investigate a novel perspective that combines frame features to create a global descriptor. The main contributions are: (i) a fast algorithm to densely extract global frame features which are easier and faster to compute than spatio-temporal local features; (ii) replacing the traditional k-means visual vocabulary from Bag-of-Words with a Random Forest approach allowing a significant speedup; (iii) the use of a modified Vector of Locally Aggregated Descriptor(VLAD) combined with a Fisher kernel approach that replace the classic Bag-of-Words approach, allowing us to achieve high accuracy. By doing so, the proposed approach combines the frame-based features effectively capturing video content variation in time. We show that our framework is highly general and is not dependent on a particular type of descriptors. Experiments performed on four different scenarios: movie genre classification, human action recognition, daily activity recognition and violence scene classification, show the superiority of the proposed approach compared to the state of the art. © 2015, Springer Science+Business Media New York.

A modified vector of locally aggregated descriptors approach for fast video classification

Duta, Ionut Cosmin;Sebe, Niculae
2016-01-01

Abstract

In order to reduce the computational complexity, most of the video classification approaches represent video data at frame level. In this paper we investigate a novel perspective that combines frame features to create a global descriptor. The main contributions are: (i) a fast algorithm to densely extract global frame features which are easier and faster to compute than spatio-temporal local features; (ii) replacing the traditional k-means visual vocabulary from Bag-of-Words with a Random Forest approach allowing a significant speedup; (iii) the use of a modified Vector of Locally Aggregated Descriptor(VLAD) combined with a Fisher kernel approach that replace the classic Bag-of-Words approach, allowing us to achieve high accuracy. By doing so, the proposed approach combines the frame-based features effectively capturing video content variation in time. We show that our framework is highly general and is not dependent on a particular type of descriptors. Experiments performed on four different scenarios: movie genre classification, human action recognition, daily activity recognition and violence scene classification, show the superiority of the proposed approach compared to the state of the art. © 2015, Springer Science+Business Media New York.
2016
15
Mironică, I.; Duta, Ionut Cosmin; Ionescu, B.; Sebe, Niculae
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/166711
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 19
  • OpenAlex ND
social impact