In this paper, the quantitative imaging of the dielectric characteristics of unknown targets buried in a lossy half-space is performed by suitably processing wide-band ground penetrating radar (GPR) measurements. An innovative multi-frequency (MF) fully non-linear inverse scattering (IS) technique exploiting the integration of a conjugate-gradient (CG) solver within the iterative multi-scaling approach (IMSA) is proposed. Representative results from numerical test cases are presented to provide the interested readers with some indications on the effectiveness, as well as the current limitations, of the proposed approach when directly compared to a state-of-the-art frequency-hopping (FH) based method formulated in the same framework. Such a validation points out that if, on the one hand, the proposed MF strategy is computationally more efficient than the FH one, on the other hand, it turns out to be less reliable and accurate in several situations. ©2016 Elsevier B.V. All rights reserved
Advanced multi-frequency GPR data processing for non-linear deterministic imaging / Salucci, Marco; Poli, Lorenzo; Massa, Andrea. - In: SIGNAL PROCESSING. - ISSN 0165-1684. - STAMPA. - 132:(2017), pp. 306-318. [10.1016/j.sigpro.2016.06.019]
Advanced multi-frequency GPR data processing for non-linear deterministic imaging
Salucci, Marco;Poli, Lorenzo;Massa, Andrea
2017-01-01
Abstract
In this paper, the quantitative imaging of the dielectric characteristics of unknown targets buried in a lossy half-space is performed by suitably processing wide-band ground penetrating radar (GPR) measurements. An innovative multi-frequency (MF) fully non-linear inverse scattering (IS) technique exploiting the integration of a conjugate-gradient (CG) solver within the iterative multi-scaling approach (IMSA) is proposed. Representative results from numerical test cases are presented to provide the interested readers with some indications on the effectiveness, as well as the current limitations, of the proposed approach when directly compared to a state-of-the-art frequency-hopping (FH) based method formulated in the same framework. Such a validation points out that if, on the one hand, the proposed MF strategy is computationally more efficient than the FH one, on the other hand, it turns out to be less reliable and accurate in several situations. ©2016 Elsevier B.V. All rights reservedFile | Dimensione | Formato | |
---|---|---|---|
R281.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.54 MB
Formato
Adobe PDF
|
2.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione