Nanoparticles assembled Co-B-O thin film catalysts were synthesized by pulsed laser deposition (PLD) technique for hydrolysis of Sodium Borohydride (SBH). Surface morphology of the deposited films was investigated using SEM and TEM, while compositional analysis was studied using XPS. Structural properties of Co-B-O films were examined using XRD and HRTEM. Laser process is able to produce well separated and immobilized Co-B-O NPs on the film surface which act as active centers leading to superior catalytic activity producing hydrogen at a significantly higher rate as compared to bulk powder. Co-B-O thin film catalyst produces hydrogen at a maximum rate of similar to 4400 ml min(-1) g(-1) of catalyst, which is four times higher than powder catalyst. PLD parameters such as laser fluence and substrate-target distance were varied during deposition in order to understand the role of size and density of the immobilized Co-B-O NPs in the catalytic process. Films deposited at 3-5 cm substrate-target distance showed better performance than that deposited at 6 cm, mainly on account of the higher density of active Co-B-O NPs on the films surface. Features such as high particle density, polycrystalline nature of Co NPs and good stability against agglomeration mainly contribute towards the superior catalytic activity of Co-B-O films deposited by PLD.

Pulsed laser deposition of nanostructured Co-B-O thin films as efficient catalyst for hydrogen production

Patel, Nainesh Kantilal;Fernandes, Rohan Pascal;Miotello, Antonio;
2016-01-01

Abstract

Nanoparticles assembled Co-B-O thin film catalysts were synthesized by pulsed laser deposition (PLD) technique for hydrolysis of Sodium Borohydride (SBH). Surface morphology of the deposited films was investigated using SEM and TEM, while compositional analysis was studied using XPS. Structural properties of Co-B-O films were examined using XRD and HRTEM. Laser process is able to produce well separated and immobilized Co-B-O NPs on the film surface which act as active centers leading to superior catalytic activity producing hydrogen at a significantly higher rate as compared to bulk powder. Co-B-O thin film catalyst produces hydrogen at a maximum rate of similar to 4400 ml min(-1) g(-1) of catalyst, which is four times higher than powder catalyst. PLD parameters such as laser fluence and substrate-target distance were varied during deposition in order to understand the role of size and density of the immobilized Co-B-O NPs in the catalytic process. Films deposited at 3-5 cm substrate-target distance showed better performance than that deposited at 6 cm, mainly on account of the higher density of active Co-B-O NPs on the films surface. Features such as high particle density, polycrystalline nature of Co NPs and good stability against agglomeration mainly contribute towards the superior catalytic activity of Co-B-O films deposited by PLD.
2016
Jadhav, H.; Singh, A. K.; Patel, Nainesh Kantilal; Fernandes, Rohan Pascal; Gupta, S.; Kothari, D. C.; Miotello, Antonio; Sinha, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/165168
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact