Spectrum sensing data falsification (SSDF) attacks represent a major challenge for cooperative spectrum sensing (CSS) in cognitive radio (CR) networks. In an SSDF attack, a malicious user or many malicious users send false sensing results to the fusion center (FC) to mislead the global decision about spectrum occupancy. Thus, an SSDF attack degrades the achievable detection accuracy, throughput, and energy efficiency of CR networks (CRNs). In this paper, a novel attacker-identification algorithm is proposed that is able to skillfully detect attackers and reject their reported results. Moreover, we provide a novel attacker-punishment algorithm that aims at punishing attackers by lowering their individual energy efficiency, motivating them either to quit sending false results or leave the network. Both algorithms are based on a novel assessment strategy of the sensing performance of each user. The proposed strategy is called delivery-based assessment, which relies on the delivery of the transmitted data to evaluate the made global decision and the individual reports. Mathematical analysis and simulation results show promising performance of both algorithms compared with previous works, particularly when then the number of attackers is very large.

Identification and punishment policies for spectrum sensing data falsification attackers using delivery-based assessment / Althunibat, Saud Ghassan Abdul Kareem; Denise, Birabwa Joanitah; Granelli, Fabrizio. - In: IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. - ISSN 0018-9545. - 2016, 65:9(2016), pp. 7308-7321. [10.1109/TVT.2015.2497349]

Identification and punishment policies for spectrum sensing data falsification attackers using delivery-based assessment

Althunibat, Saud Ghassan Abdul Kareem;Granelli, Fabrizio
2016-01-01

Abstract

Spectrum sensing data falsification (SSDF) attacks represent a major challenge for cooperative spectrum sensing (CSS) in cognitive radio (CR) networks. In an SSDF attack, a malicious user or many malicious users send false sensing results to the fusion center (FC) to mislead the global decision about spectrum occupancy. Thus, an SSDF attack degrades the achievable detection accuracy, throughput, and energy efficiency of CR networks (CRNs). In this paper, a novel attacker-identification algorithm is proposed that is able to skillfully detect attackers and reject their reported results. Moreover, we provide a novel attacker-punishment algorithm that aims at punishing attackers by lowering their individual energy efficiency, motivating them either to quit sending false results or leave the network. Both algorithms are based on a novel assessment strategy of the sensing performance of each user. The proposed strategy is called delivery-based assessment, which relies on the delivery of the transmitted data to evaluate the made global decision and the individual reports. Mathematical analysis and simulation results show promising performance of both algorithms compared with previous works, particularly when then the number of attackers is very large.
2016
9
Althunibat, Saud Ghassan Abdul Kareem; Denise, Birabwa Joanitah; Granelli, Fabrizio
Identification and punishment policies for spectrum sensing data falsification attackers using delivery-based assessment / Althunibat, Saud Ghassan Abdul Kareem; Denise, Birabwa Joanitah; Granelli, Fabrizio. - In: IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. - ISSN 0018-9545. - 2016, 65:9(2016), pp. 7308-7321. [10.1109/TVT.2015.2497349]
File in questo prodotto:
File Dimensione Formato  
07317586.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF   Visualizza/Apri
mainbody-1.pdf

Solo gestori archivio

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 372.99 kB
Formato Adobe PDF
372.99 kB Adobe PDF   Visualizza/Apri
TVT2497349.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.23 MB
Formato Adobe PDF
3.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/154788
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 40
  • OpenAlex ND
social impact