Indoor localization is one of the key problems in robotics research. Most current localization systems use cellular base stations and Wifi signals, whose localization accuracy is largely dependent on the signal strength and is sensitive to environmental changes. With the development of camera-based technologies, image-based localization may be employed in an indoor environment where the GPS signal is weak. Most of the existing image-based localization systems are based on color images captured by cameras, but this is only feasible in environments with adequate lighting conditions. In this paper, we introduce an image-based localization system based on thermal imaging to make the system independent of light sources, which are especially useful during emergencies such as a sudden power outage in a building. As thermal images are not obtained as easily as color images, we apply active transfer learning to enrich the thermal image classification learning, where normal RGB images are treate...

Where am I in the dark: Exploring active transfer learning on the use of indoor localization based on thermal imaging

Yan, Yan;Sebe, Niculae;
2016-01-01

Abstract

Indoor localization is one of the key problems in robotics research. Most current localization systems use cellular base stations and Wifi signals, whose localization accuracy is largely dependent on the signal strength and is sensitive to environmental changes. With the development of camera-based technologies, image-based localization may be employed in an indoor environment where the GPS signal is weak. Most of the existing image-based localization systems are based on color images captured by cameras, but this is only feasible in environments with adequate lighting conditions. In this paper, we introduce an image-based localization system based on thermal imaging to make the system independent of light sources, which are especially useful during emergencies such as a sudden power outage in a building. As thermal images are not obtained as easily as color images, we apply active transfer learning to enrich the thermal image classification learning, where normal RGB images are treate...
2016
Lu, Guoyu; Yan, Yan; Ren, Li; Saponaro, Philip; Sebe, Niculae; Kambhamettu, Chandra
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/148085
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 42
  • OpenAlex 76
social impact