Channel bifurcations are a fundamental element of a broad variety of flowing freshwater environments worldwide, such as braiding and anabranching rivers, river deltas and alluvial fans. River bifurcations often develop asymmetrical configurations with uneven discharge partition and a bed elevation gap between the downstream anabranches. This has been reproduced by one-dimensional (1-D) analytical theories which, however, rely on the empirical calibration of one or more parameters and cannot provide a clear and detailed physical explanation of the observed dynamics. We propose a novel two-dimensional (2-D) solution for the flow and bed topography in channel bifurcations based on an innovative application to a multi-thread channel configuration of the 2-D steady linear solution developed decades ago to study river bars and meandering in single thread river settings. The resonant value of the upstream channel aspect ratio, corresponding to the theoretical resonance condition of regular river meanders (Blondeaux & Seminara, J. Fluid Mech., vol. 157, 1985, pp. 449–470) is the key parameter discriminating between symmetrical and asymmetrical bifurcations, in quantitative agreement with experimental observations and numerical simulations, and qualitatively matching field observations. Only when the aspect ratio of the upstream channel of the bifurcation exceeds resonance, is the bifurcation node able to trigger the upstream development of a steady alternate bar pattern, thus creating an unbalanced configuration. Ultimately, the work provides an analytical explanation of the intrinsic legacy between bifurcation asymmetry and the phenomenon of 2-D upstream morphodynamic influence discovered by Zolezzi & Seminara (J. Fluid Mech., vol. 438, 2001, pp. 183–211).

Free instability of channel bifurcations and morphodynamic influence / Redolfi, Marco; Zolezzi, Guido; Tubino, Marco. - In: JOURNAL OF FLUID MECHANICS. - ISSN 0022-1120. - STAMPA. - 799:(2016), pp. 476-504. [10.1017/jfm.2016.389]

Free instability of channel bifurcations and morphodynamic influence

Redolfi, Marco;Zolezzi, Guido;Tubino, Marco
2016-01-01

Abstract

Channel bifurcations are a fundamental element of a broad variety of flowing freshwater environments worldwide, such as braiding and anabranching rivers, river deltas and alluvial fans. River bifurcations often develop asymmetrical configurations with uneven discharge partition and a bed elevation gap between the downstream anabranches. This has been reproduced by one-dimensional (1-D) analytical theories which, however, rely on the empirical calibration of one or more parameters and cannot provide a clear and detailed physical explanation of the observed dynamics. We propose a novel two-dimensional (2-D) solution for the flow and bed topography in channel bifurcations based on an innovative application to a multi-thread channel configuration of the 2-D steady linear solution developed decades ago to study river bars and meandering in single thread river settings. The resonant value of the upstream channel aspect ratio, corresponding to the theoretical resonance condition of regular river meanders (Blondeaux & Seminara, J. Fluid Mech., vol. 157, 1985, pp. 449–470) is the key parameter discriminating between symmetrical and asymmetrical bifurcations, in quantitative agreement with experimental observations and numerical simulations, and qualitatively matching field observations. Only when the aspect ratio of the upstream channel of the bifurcation exceeds resonance, is the bifurcation node able to trigger the upstream development of a steady alternate bar pattern, thus creating an unbalanced configuration. Ultimately, the work provides an analytical explanation of the intrinsic legacy between bifurcation asymmetry and the phenomenon of 2-D upstream morphodynamic influence discovered by Zolezzi & Seminara (J. Fluid Mech., vol. 438, 2001, pp. 183–211).
2016
Redolfi, Marco; Zolezzi, Guido; Tubino, Marco
Free instability of channel bifurcations and morphodynamic influence / Redolfi, Marco; Zolezzi, Guido; Tubino, Marco. - In: JOURNAL OF FLUID MECHANICS. - ISSN 0022-1120. - STAMPA. - 799:(2016), pp. 476-504. [10.1017/jfm.2016.389]
File in questo prodotto:
File Dimensione Formato  
31-2016-JFM-Redolfi_Bifo_MorphoInfluence.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 834.65 kB
Formato Adobe PDF
834.65 kB Adobe PDF   Visualizza/Apri
2_PDFsam_Redolfi_et_al_2016_JFM_DRAFT.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 700.28 kB
Formato Adobe PDF
700.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/147119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 29
social impact