River water temperature is a key physical variable controlling several chemical, biological and ecological processes. Its reliable prediction is a main issue in many environmental applications, which however is hampered by data scarcity, when using datademanding deterministic models, and modelling limitations, when using simpler statistical models. In this work we test a suite of models belonging to air2stream family, which are characterized by a hybrid formulation that combines a physical derivation of the key equation with a stochastic calibration of parameters. The air2stream models rely solely on air temperature and streamflow, and are of similar complexity as standard statistical models. The performances of the different versions of air2stream in predicting river water temperature are compared with those of the most common statistical models typically used in the literature. To this aim, a dataset of 38 Swiss rivers is used, which includes rivers classified into four different categories according to their hydrological characteristics: low-land natural rivers, lake outlets, snow-fed rivers and regulated rivers. The results of the analysis provide practical indications regarding the type of model that is most suitable to simulate river water temperature across different time scales (from daily to seasonal) and for different hydrological regimes. A model intercomparison exercise suggests that the family of air2stream hybrid models generally outperforms statistical models, while cross-validation conducted over a 30-year period indicates that they can be suitably adopted for long-term analyses. Copyright © 2016 John Wiley & Sons, Ltd.
Prediction of river water temperature: a comparison between a new family of hybrid models and statistical approaches / Piccolroaz, Sebastiano; Calamita, Elisa; Majone, Bruno; Gallice, Aurélien; Siviglia, Annunziato; Toffolon, Marco. - In: HYDROLOGICAL PROCESSES. - ISSN 0885-6087. - STAMPA. - 30:21(2016), pp. 3901-3917. [10.1002/hyp.10913]
Prediction of river water temperature: a comparison between a new family of hybrid models and statistical approaches
Piccolroaz, Sebastiano;Calamita, Elisa;Majone, Bruno;Siviglia, Annunziato;Toffolon, Marco
2016-01-01
Abstract
River water temperature is a key physical variable controlling several chemical, biological and ecological processes. Its reliable prediction is a main issue in many environmental applications, which however is hampered by data scarcity, when using datademanding deterministic models, and modelling limitations, when using simpler statistical models. In this work we test a suite of models belonging to air2stream family, which are characterized by a hybrid formulation that combines a physical derivation of the key equation with a stochastic calibration of parameters. The air2stream models rely solely on air temperature and streamflow, and are of similar complexity as standard statistical models. The performances of the different versions of air2stream in predicting river water temperature are compared with those of the most common statistical models typically used in the literature. To this aim, a dataset of 38 Swiss rivers is used, which includes rivers classified into four different categories according to their hydrological characteristics: low-land natural rivers, lake outlets, snow-fed rivers and regulated rivers. The results of the analysis provide practical indications regarding the type of model that is most suitable to simulate river water temperature across different time scales (from daily to seasonal) and for different hydrological regimes. A model intercomparison exercise suggests that the family of air2stream hybrid models generally outperforms statistical models, while cross-validation conducted over a 30-year period indicates that they can be suitably adopted for long-term analyses. Copyright © 2016 John Wiley & Sons, Ltd.File | Dimensione | Formato | |
---|---|---|---|
Piccolroaz_et_al-2016-Hydrological_Processes_final.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
989 kB
Formato
Adobe PDF
|
989 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione