An approach to infinite-dimensional integration which unifies the case of oscillatory integrals and the case of probabilistic type integrals is presented. It provides a truly infinite-dimensional construction of integrals as linear functionals, as much as possible independent of the underlying topological and measure theoretical structure. Various applications are given, including, next to Feynman path integrals, Schr ̈odinger and dif- fusion equations, as well as higher order hyperbolic and parabolic equations.

A unified approach to infinite-dimensional integration / Albeverio, Sergio; Mazzucchi, Sonia. - In: REVIEWS IN MATHEMATICAL PHYSICS. - ISSN 0129-055X. - 2016/28:2(2016), pp. 165000501-165000543. [10.1142/S0129055X16500057]

A unified approach to infinite-dimensional integration

Albeverio, Sergio;Mazzucchi, Sonia
2016-01-01

Abstract

An approach to infinite-dimensional integration which unifies the case of oscillatory integrals and the case of probabilistic type integrals is presented. It provides a truly infinite-dimensional construction of integrals as linear functionals, as much as possible independent of the underlying topological and measure theoretical structure. Various applications are given, including, next to Feynman path integrals, Schr ̈odinger and dif- fusion equations, as well as higher order hyperbolic and parabolic equations.
2016
2
Albeverio, Sergio; Mazzucchi, Sonia
A unified approach to infinite-dimensional integration / Albeverio, Sergio; Mazzucchi, Sonia. - In: REVIEWS IN MATHEMATICAL PHYSICS. - ISSN 0129-055X. - 2016/28:2(2016), pp. 165000501-165000543. [10.1142/S0129055X16500057]
File in questo prodotto:
File Dimensione Formato  
RevMathPhys2016.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 543.78 kB
Formato Adobe PDF
543.78 kB Adobe PDF   Visualizza/Apri
1411.2853.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 500.13 kB
Formato Adobe PDF
500.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/139565
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 16
social impact