The Tukey's gh distribution is widely used in situations where skewness and elongation are important features of the data. As the distribution is defined through a quantile transformation of the normal, the likelihood function cannot be written in closed form and exact maximum likelihood estimation is unfeasible. In this paper we exploit a novel approach based on a frequentist reinterpretation of Approximate Bayesian Computation for approximating the maximum likelihood estimates of the gh distribution. This method is appealing because it only requires the ability to sample the distribution. We discuss the choice of the input parameters by means of simulation experiments and provide evidence of superior performance in terms of Root-Mean-Square-Error with respect to the standard quantile estimator. Finally, we give an application to operational risk measurement.

A simple approach to the estimation of Tukey's gh distribution

Bee, Marco;
2016-01-01

Abstract

The Tukey's gh distribution is widely used in situations where skewness and elongation are important features of the data. As the distribution is defined through a quantile transformation of the normal, the likelihood function cannot be written in closed form and exact maximum likelihood estimation is unfeasible. In this paper we exploit a novel approach based on a frequentist reinterpretation of Approximate Bayesian Computation for approximating the maximum likelihood estimates of the gh distribution. This method is appealing because it only requires the ability to sample the distribution. We discuss the choice of the input parameters by means of simulation experiments and provide evidence of superior performance in terms of Root-Mean-Square-Error with respect to the standard quantile estimator. Finally, we give an application to operational risk measurement.
2016
16
Bee, Marco; Trapin, Luca
File in questo prodotto:
File Dimensione Formato  
Revision1bib.pdf

Solo gestori archivio

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 423 kB
Formato Adobe PDF
423 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/137420
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact