The application of the compressive sensing (CS) paradigm to retrieve non-single-pixels contrast profiles is discussed. By exploiting a wavelet representation to model complex scatterer distributions with sparse vectors of coefficients, an efficient Bayesian CS (BCS) strategy is adopted to solve the arising inverse scattering problem. A set of representative numerical examples is presented to illustrate the advantages and the limitations of the proposed approach also with respect to comparable state-of-the-art inversion methods

Wavelet-based compressive imaging of sparse targets / Anselmi, Nicola; Salucci, Marco; Oliveri, Giacomo; Massa, Andrea. - In: IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. - ISSN 0018-926X. - STAMPA. - 63:11(2015), pp. 4889-4900. [10.1109/TAP.2015.2444423]

Wavelet-based compressive imaging of sparse targets

Anselmi, Nicola;Salucci, Marco;Oliveri, Giacomo;Massa, Andrea
2015-01-01

Abstract

The application of the compressive sensing (CS) paradigm to retrieve non-single-pixels contrast profiles is discussed. By exploiting a wavelet representation to model complex scatterer distributions with sparse vectors of coefficients, an efficient Bayesian CS (BCS) strategy is adopted to solve the arising inverse scattering problem. A set of representative numerical examples is presented to illustrate the advantages and the limitations of the proposed approach also with respect to comparable state-of-the-art inversion methods
2015
11
Anselmi, Nicola; Salucci, Marco; Oliveri, Giacomo; Massa, Andrea
Wavelet-based compressive imaging of sparse targets / Anselmi, Nicola; Salucci, Marco; Oliveri, Giacomo; Massa, Andrea. - In: IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. - ISSN 0018-926X. - STAMPA. - 63:11(2015), pp. 4889-4900. [10.1109/TAP.2015.2444423]
File in questo prodotto:
File Dimensione Formato  
Wavelet-based compressive imaging of sparse targets.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/135463
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 91
  • ???jsp.display-item.citation.isi??? 83
  • OpenAlex ND
social impact