We define the \emph{curvilinear rank} of a degree $d$ form $P$ in $n+1$ variables as the minimum length of a curvilinear scheme, contained in the $d$-th Veronese embedding of $\mathbb{P}^n$, whose span contains the projective class of $P$. Then, we give a bound for rank of any homogenous polynomial, in dependance on its curvilinear rank.

Curvilinear schemes and maximum rank of forms / Ballico, E; Bernardi, Alessandra. - In: LE MATEMATICHE. - ISSN 0373-3505. - STAMPA. - 72:1(2017), pp. 137-144. [10.4418/2017.72.1.10]

Curvilinear schemes and maximum rank of forms

Ballico E;Bernardi, Alessandra
2017-01-01

Abstract

We define the \emph{curvilinear rank} of a degree $d$ form $P$ in $n+1$ variables as the minimum length of a curvilinear scheme, contained in the $d$-th Veronese embedding of $\mathbb{P}^n$, whose span contains the projective class of $P$. Then, we give a bound for rank of any homogenous polynomial, in dependance on its curvilinear rank.
2017
1
Ballico, E; Bernardi, Alessandra
Curvilinear schemes and maximum rank of forms / Ballico, E; Bernardi, Alessandra. - In: LE MATEMATICHE. - ISSN 0373-3505. - STAMPA. - 72:1(2017), pp. 137-144. [10.4418/2017.72.1.10]
File in questo prodotto:
File Dimensione Formato  
1360-1-4892-1-10-20170616.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 134.28 kB
Formato Adobe PDF
134.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/134912
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact