We define the \emph{curvilinear rank} of a degree $d$ form $P$ in $n+1$ variables as the minimum length of a curvilinear scheme, contained in the $d$-th Veronese embedding of $\mathbb{P}^n$, whose span contains the projective class of $P$. Then, we give a bound for rank of any homogenous polynomial, in dependance on its curvilinear rank.
Curvilinear schemes and maximum rank of forms / Ballico, E; Bernardi, Alessandra. - In: LE MATEMATICHE. - ISSN 0373-3505. - STAMPA. - 72:1(2017), pp. 137-144. [10.4418/2017.72.1.10]
Curvilinear schemes and maximum rank of forms
Ballico E;Bernardi, Alessandra
2017-01-01
Abstract
We define the \emph{curvilinear rank} of a degree $d$ form $P$ in $n+1$ variables as the minimum length of a curvilinear scheme, contained in the $d$-th Veronese embedding of $\mathbb{P}^n$, whose span contains the projective class of $P$. Then, we give a bound for rank of any homogenous polynomial, in dependance on its curvilinear rank.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1360-1-4892-1-10-20170616.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
134.28 kB
Formato
Adobe PDF
|
134.28 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione