A well known theorem by Alexander-Hirschowitz states that all the higher secant varieties of $V_{n,d}$ (the $d$-uple embedding of $mathbb{P}^n$) have the expected dimension, with few known exceptions. We study here the same problem for $T_{n,d}$, the tangential variety to $V_{n,d}$, and prove a conjecture, which is the analogous of Alexander-Hirschowitz theorem, for $nleq 9$. Moreover. we prove that it holds for any $n,d$ if it holds for $d=3$. Then we generalize to the case of $O_{k,n,d}$, the $k$-osculating variety to $V_{n,d}$, proving, for $n=2$, a conjecture that relates the defectivity of $sigma_s(O_{k,n,d})$ to the Hilbert function of certain sets of fat points in $mathbb{P}^n$.
Secant varieties to Osculating Varieties of Veronese embeddings of P n / Bernardi, Alessandra; M. V., Catalisano; A., Gimigliano; M. I. d., À.. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 321(2009), pp. 982-1004.
Titolo: | Secant varieties to Osculating Varieties of Veronese embeddings of P n |
Autori: | Bernardi, Alessandra; M. V., Catalisano; A., Gimigliano; M. I. d., À. |
Autori Unitn: | |
Titolo del periodico: | JOURNAL OF ALGEBRA |
Anno di pubblicazione: | 2009 |
Codice identificativo Scopus: | 2-s2.0-57649225888 |
Codice identificativo Pubmed: | 10.1016/j.algebra.2008.10.020 |
Codice identificativo ISI: | WOS:000263315600014 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jalgebra.2008.10.020 |
Handle: | http://hdl.handle.net/11572/134897 |
Citazione: | Secant varieties to Osculating Varieties of Veronese embeddings of P n / Bernardi, Alessandra; M. V., Catalisano; A., Gimigliano; M. I. d., À.. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 321(2009), pp. 982-1004. |
Appare nelle tipologie: | 03.1 Articolo su rivista (Journal article) |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
OSCUarxivbis.pdf | Post-print referato (Refereed author’s manuscript) | Tutti i diritti riservati (All rights reserved) | Open Access Visualizza/Apri |