We prove that the smallest degree of an apolar 0-dimensional scheme of a general cubic form in n + 1 variables is at most 2n + 2, when n >= 8, and therefore smaller than the rank of the form. For the general reducible cubic form the smallest degree of an apolar subscheme is n + 2, while the rank is at least 2n.

On the cactus rank of cubic forms / Bernardi, Alessandra; Ranestad, K.. - In: JOURNAL OF SYMBOLIC COMPUTATION. - ISSN 0747-7171. - 50:(2013), pp. 291-297. [10.1016/j.jsc.2012.08.001]

On the cactus rank of cubic forms

Bernardi, Alessandra;
2013

Abstract

We prove that the smallest degree of an apolar 0-dimensional scheme of a general cubic form in n + 1 variables is at most 2n + 2, when n >= 8, and therefore smaller than the rank of the form. For the general reducible cubic form the smallest degree of an apolar subscheme is n + 2, while the rank is at least 2n.
Bernardi, Alessandra; Ranestad, K.
On the cactus rank of cubic forms / Bernardi, Alessandra; Ranestad, K.. - In: JOURNAL OF SYMBOLIC COMPUTATION. - ISSN 0747-7171. - 50:(2013), pp. 291-297. [10.1016/j.jsc.2012.08.001]
File in questo prodotto:
File Dimensione Formato  
cubicspoly160412.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 297.77 kB
Formato Adobe PDF
297.77 kB Adobe PDF Visualizza/Apri
1-s2.0-S0747717112001332-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 159.21 kB
Formato Adobe PDF
159.21 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/134847
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 27
social impact