We investigated the induction of apoptosis by cadmium in NIH 3T3 murine fibroblasts. Apoptosis was triggered effectively by 10 microM CdCl2 within 24 h, under which conditions cell viability was reduced by 50%. Cadmium-induced apoptosis was demonstrated by both morphological and biochemical analysis. We have shown that cadmium concentrations of 5-20 microM caused nuclear fragmentation. Moreover, internucleosomal DNA fragmentation was evoked by 10-25 microM CdCl2 within 24 h, as detected by the formation of ladder patterns in DNA electrophoresis. Since the induction of programmed cell death occurs together with modifications in the cell cycle, we examined the ability of cadmium to block cell divisions by using a 5-bromo2-deoxy-uridine incorporation assay. Our results indicate that about 40% of treated cells are blocked in G0-G1 phase when exposed to 10 microM cadmium for 27 h. Finally, we addressed the question of whether the effect of cadmium could be prevented by suppressing apoptosis. Over-expression of the anti-apoptotic protein Bcl-2 in NIH 3T3 cells protects against cadmium toxicity, thus suggesting a role for Bcl-2 in the regulation of cadmium-induced apoptosis.

Cadmium-induced apoptosis in murine fibroblasts is suppressed by Bcl-2

Biagioli, Marta;
2001-01-01

Abstract

We investigated the induction of apoptosis by cadmium in NIH 3T3 murine fibroblasts. Apoptosis was triggered effectively by 10 microM CdCl2 within 24 h, under which conditions cell viability was reduced by 50%. Cadmium-induced apoptosis was demonstrated by both morphological and biochemical analysis. We have shown that cadmium concentrations of 5-20 microM caused nuclear fragmentation. Moreover, internucleosomal DNA fragmentation was evoked by 10-25 microM CdCl2 within 24 h, as detected by the formation of ladder patterns in DNA electrophoresis. Since the induction of programmed cell death occurs together with modifications in the cell cycle, we examined the ability of cadmium to block cell divisions by using a 5-bromo2-deoxy-uridine incorporation assay. Our results indicate that about 40% of treated cells are blocked in G0-G1 phase when exposed to 10 microM cadmium for 27 h. Finally, we addressed the question of whether the effect of cadmium could be prevented by suppressing apoptosis. Over-expression of the anti-apoptotic protein Bcl-2 in NIH 3T3 cells protects against cadmium toxicity, thus suggesting a role for Bcl-2 in the regulation of cadmium-induced apoptosis.
2001
6
Biagioli, Marta; Wätjen, W; Beyersmann, D; Zoncu, R; Cappellini, C; Ragghianti, M; Cremisi, F; Bucci, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/133772
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 30
  • OpenAlex ND
social impact