Seagrasses such as Posidonia oceanica (L.) Delile are marine phanerogams, widespread in various seas, where they form large prairies representing dynamic substrates exceeding the area of the sediment surface several times over and allowing settlement of epiphyte organisms. Studying mechanisms involved in water transport in marine plants, we isolated two aquaporin-encoding genes, PoPIP1;1 and PoTIP1;1, showing high similarity to plasma membrane- and tonoplast-intrinsic protein-encoding genes, respectively. PoPIP1;1 is unique in the genome of P. oceanica, while PoTIP1;1 belongs to an aquaporin subfamily of at least four members. PoPIP1;1 and PoTIP1;1 encode functional proteins, as indicated by expression experiments in Xenopus oocytes. Both genes are constitutively expressed in the leaves, with higher levels of transcripts in young than in differentiated leaf tissues. Variations of salt concentration in aquarium determined different PoPIP1;1 and PoTIP1;1 transcript accumulation, indicating the existence of adaptation mechanisms related to gene expression also in marine plants, i.e. adapted to very high salt concentrations. Hyposalinity induced lower levels of PIP1 transcripts, while hypersalinity determined more PIP1 transcripts than normal salinity. TIP1 transcripts increased in response to both hypo- and hypersalinity after 2 days of treatment and went back to control levels after 5 d.

Isolation and expression of two aquaporin-encoding genes from the marine phanerogam Posidonia oceanica

Lunardi, Andrea;
2004-01-01

Abstract

Seagrasses such as Posidonia oceanica (L.) Delile are marine phanerogams, widespread in various seas, where they form large prairies representing dynamic substrates exceeding the area of the sediment surface several times over and allowing settlement of epiphyte organisms. Studying mechanisms involved in water transport in marine plants, we isolated two aquaporin-encoding genes, PoPIP1;1 and PoTIP1;1, showing high similarity to plasma membrane- and tonoplast-intrinsic protein-encoding genes, respectively. PoPIP1;1 is unique in the genome of P. oceanica, while PoTIP1;1 belongs to an aquaporin subfamily of at least four members. PoPIP1;1 and PoTIP1;1 encode functional proteins, as indicated by expression experiments in Xenopus oocytes. Both genes are constitutively expressed in the leaves, with higher levels of transcripts in young than in differentiated leaf tissues. Variations of salt concentration in aquarium determined different PoPIP1;1 and PoTIP1;1 transcript accumulation, indicating the existence of adaptation mechanisms related to gene expression also in marine plants, i.e. adapted to very high salt concentrations. Hyposalinity induced lower levels of PIP1 transcripts, while hypersalinity determined more PIP1 transcripts than normal salinity. TIP1 transcripts increased in response to both hypo- and hypersalinity after 2 days of treatment and went back to control levels after 5 d.
2004
12
Maestrini, Pierluigi; Giordani, Tommaso; Lunardi, Andrea; Cavallini, Andrea; Natali, Lucia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/128229
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact