In this article, we present a novel approach to segment discriminative patches in human activity videos. First, we adopt the spatio-temporal interest points (STIPs) to represent significant motion patterns in the video sequence. Then, nonnegative sparse coding is exploited to generate a sparse representation of each STIP descriptor. We construct the feature vector for each video by applying a two-stage sum-pooling and l2-normalization operation. After training a multi-class classifier through the error-correcting code SVM, the discriminative portion of each video is determined as the patch that has the highest confidence while also being correctly classified according to the video category. Experimental results show that the video patches extracted by our method are more separable, while preserving the perceptually relevant portion of each activity.

Segmentation of discriminative patches in human activity video

Zhang, Bo;Conci, Nicola;De Natale, Francesco
2015-01-01

Abstract

In this article, we present a novel approach to segment discriminative patches in human activity videos. First, we adopt the spatio-temporal interest points (STIPs) to represent significant motion patterns in the video sequence. Then, nonnegative sparse coding is exploited to generate a sparse representation of each STIP descriptor. We construct the feature vector for each video by applying a two-stage sum-pooling and l2-normalization operation. After training a multi-class classifier through the error-correcting code SVM, the discriminative portion of each video is determined as the patch that has the highest confidence while also being correctly classified according to the video category. Experimental results show that the video patches extracted by our method are more separable, while preserving the perceptually relevant portion of each activity.
2015
1
Zhang, Bo; Conci, Nicola; De Natale, Francesco
File in questo prodotto:
File Dimensione Formato  
[ACM TOMM] Segmentation of Discriminative Patches in Human Activity Video.pdf

Solo gestori archivio

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/126650
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact