This work deals with the homogenization of an initial- and boundary-value problem for the doubly-nonlinear system Dtw − ∇ · ⃗z = g(x, t, x/ε) (0.1) w ∈ α(u, x/ε) (0.2) ⃗z ∈ ⃗γ (∇u, x/ε). (0.3) Here ε is a positive parameter; α and γ⃗ are maximal monotone with respect to the first variable and periodic with respect to the second one. The inclusions (0.2) and (0.3) are here formulated as null-minimization principles, via the theory of Fitzpatrick [MR 1009594]. As ε → 0, a two-scale formulation is derived via Nguetseng’s notion of two-scale convergence, and a (single-scale) homogenized problem is then retrieved.
Titolo: | Variational approach to homogenization of doubly-nonlinear flow in a periodic structure |
Autori: | Nandakumarana, A. K.; Visintin, Augusto |
Autori Unitn: | |
Titolo del periodico: | NONLINEAR ANALYSIS |
Anno di pubblicazione: | 2015 |
Codice identificativo Scopus: | 2-s2.0-84925003792 |
Codice identificativo ISI: | WOS:000354825800002 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.na.2015.02.010 |
Handle: | http://hdl.handle.net/11572/125485 |
Appare nelle tipologie: | 03.1 Articolo su rivista (Journal article) |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Visintin-Variational approach.pdf | Versione editoriale (Publisher’s layout) | Tutti i diritti riservati (All rights reserved) | Administrator |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione