In this paper we consider a perturbation of the Ricci solitons equation proposed by J. P. Bourguignon. We show that these structures are more rigid than standard Ricci solitons. It turns out that this property holds also in the Lorentzian setting and for a more general class of structures which includes some gravitational theories. We prove several classification results both in the compact and the noncompact case and we provide at the same time existence results for rotationally symmetric solutions.

Gradient Einstein solitons / Catino, Giovanni; Mazzieri, Lorenzo. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 132:(2016), pp. 66-94. [10.1016/j.na.2015.10.021]

Gradient Einstein solitons

Mazzieri, Lorenzo
2016

Abstract

In this paper we consider a perturbation of the Ricci solitons equation proposed by J. P. Bourguignon. We show that these structures are more rigid than standard Ricci solitons. It turns out that this property holds also in the Lorentzian setting and for a more general class of structures which includes some gravitational theories. We prove several classification results both in the compact and the noncompact case and we provide at the same time existence results for rotationally symmetric solutions.
Catino, Giovanni; Mazzieri, Lorenzo
Gradient Einstein solitons / Catino, Giovanni; Mazzieri, Lorenzo. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 132:(2016), pp. 66-94. [10.1016/j.na.2015.10.021]
File in questo prodotto:
File Dimensione Formato  
Gradient Einstein solitons.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 764.97 kB
Formato Adobe PDF
764.97 kB Adobe PDF   Visualizza/Apri
1201.6620.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 335.24 kB
Formato Adobe PDF
335.24 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/122496
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 69
social impact