A Carnot group is a connected, simply connected, nilpotent Lie group with stratified Lie algebra.We study the notions of intrinsic graphs and of intrinsic Lipschitz graphs within Carnot groups. Intrinsic Lipschitz graphs are the natural local analogue inside Carnot groups of Lipschitz submanifolds in Euclidean spaces, where “natural” emphasizes that the notion depends only on the structure of the algebra. Intrinsic Lipschitz graphs unify different alternative approaches through Lipschitz parameterizations or level sets. We provide both geometric and analytic characterizations and a clarifying relation between these graphs and Rumin’s complex of differential forms.
Intrinsic Lipschitz Graphs Within Carnot Groups / Franchi, Bruno; Serapioni, Raul Paolo. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - STAMPA. - 26:(2016), pp. 1946-1994. [10.1007/s12220-015-9615-5]
Intrinsic Lipschitz Graphs Within Carnot Groups
Serapioni, Raul Paolo
2016-01-01
Abstract
A Carnot group is a connected, simply connected, nilpotent Lie group with stratified Lie algebra.We study the notions of intrinsic graphs and of intrinsic Lipschitz graphs within Carnot groups. Intrinsic Lipschitz graphs are the natural local analogue inside Carnot groups of Lipschitz submanifolds in Euclidean spaces, where “natural” emphasizes that the notion depends only on the structure of the algebra. Intrinsic Lipschitz graphs unify different alternative approaches through Lipschitz parameterizations or level sets. We provide both geometric and analytic characterizations and a clarifying relation between these graphs and Rumin’s complex of differential forms.File | Dimensione | Formato | |
---|---|---|---|
FS_2_reprint.pdf
Solo gestori archivio
Descrizione: Author's personal copy
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
968.46 kB
Formato
Adobe PDF
|
968.46 kB | Adobe PDF | Visualizza/Apri |
Franchi-Serapioni2016_Article_IntrinsicLipschitzGraphsWithin.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
754.38 kB
Formato
Adobe PDF
|
754.38 kB | Adobe PDF | Visualizza/Apri |
Radem-20130402.pdf
accesso aperto
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
478.09 kB
Formato
Adobe PDF
|
478.09 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione