The Einstein-Brillouin-Keller semiclassical quantization and the topological Maslov index are used to compute the electronic structure of carbon based nanostructures with or without transverse magnetic field. The calculation is based on the Dirac Fermions approach in the limit of strong coupling for the pseudospin. The electronic bandstructure for carbon nanotubes and graphene nanoribbons are discussed, focusing on the role of the chirality and of the unbonded edges configuration respectively. The effects of a transverse uniform magnetic field are analyzed, the different kinds of classical trajectories are discussed and related to the corresponding energies. The development is concise, transparent, and involves only elementary integral calculus and provides a conceptual and intuitive introduction to the quantum nature of carbon nanostructures.

THE EINSTEIN-BRILLOUIN-KELLER ACTION QUANTIZATION FOR DIRAC FERMIONS

Onorato, Pasquale
2011

Abstract

The Einstein-Brillouin-Keller semiclassical quantization and the topological Maslov index are used to compute the electronic structure of carbon based nanostructures with or without transverse magnetic field. The calculation is based on the Dirac Fermions approach in the limit of strong coupling for the pseudospin. The electronic bandstructure for carbon nanotubes and graphene nanoribbons are discussed, focusing on the role of the chirality and of the unbonded edges configuration respectively. The effects of a transverse uniform magnetic field are analyzed, the different kinds of classical trajectories are discussed and related to the corresponding energies. The development is concise, transparent, and involves only elementary integral calculus and provides a conceptual and intuitive introduction to the quantum nature of carbon nanostructures.
8
Onorato, Pasquale
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/121415
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact