Within the geometrical framework developed in [Geometric constrained variational calculus. I: Piecewise smooth extremals, Int. J. Geom. Methods Mod. Phys. 12 (2015) 1550061], the problem of minimality for constrained calculus of variations is analyzed among the class of differentiable curves. A fully covariant representation of the second variation of the action functional, based on a suitable gauge transformation of the Lagrangian, is explicitly worked out. Both necessary and sufficient conditions for minimality are proved, and reinterpreted in terms of Jacobi fields.

Geometric constrained variational calculus. II: The second variation (Parti I) / Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico. - In: INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS. - ISSN 0219-8878. - STAMPA. - 2015 Vol. 12:12(2015), pp. 1-31. [10.1142/S0219887815501327]

Geometric constrained variational calculus. II: The second variation (Parti I)

Pagani, Enrico
2015-01-01

Abstract

Within the geometrical framework developed in [Geometric constrained variational calculus. I: Piecewise smooth extremals, Int. J. Geom. Methods Mod. Phys. 12 (2015) 1550061], the problem of minimality for constrained calculus of variations is analyzed among the class of differentiable curves. A fully covariant representation of the second variation of the action functional, based on a suitable gauge transformation of the Lagrangian, is explicitly worked out. Both necessary and sufficient conditions for minimality are proved, and reinterpreted in terms of Jacobi fields.
2015
12
Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico
Geometric constrained variational calculus. II: The second variation (Parti I) / Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico. - In: INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS. - ISSN 0219-8878. - STAMPA. - 2015 Vol. 12:12(2015), pp. 1-31. [10.1142/S0219887815501327]
File in questo prodotto:
File Dimensione Formato  
IJGMMP1550132 - Ricevuto dalla Rivista il 16-10-2015 - Corrected.pdf

Solo gestori archivio

Descrizione: Articolo completo
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 451.1 kB
Formato Adobe PDF
451.1 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/113392
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact