The present work proposes a computational model of morpheme combination at the meaning level. The model moves from the tenets of distributional semantics, and assumes that word meanings can be effectively represented by vectors recording their co-occurrence with other words in a large text corpus. Given this assumption, affixes are modeled as functions (matrices) mapping stems onto derived forms. Derived-form meanings can be thought of as the result of a combinatorial procedure that transforms the stem vector on the basis of the affix matrix (e.g., the meaning of nameless is obtained by multiplying the vector of name with the matrix of -less). We show that this architecture accounts for the remarkable human capacity of generating new words that denote novel meanings, correctly predicting semantic intuitions about novel derived forms. Moreover, the proposed compositional approach, once paired with a whole-word route, provides a new interpretative framework for semantic transparency, which is here partially explained in terms of ease of the combinatorial procedure and strength of the transformation brought about by the affix. Model-based predictions are in line with the modulation of semantic transparency on explicit intuitions about existing words, response times in lexical decision, and morphological priming. In conclusion, we introduce a computational model to account for morpheme combination at the meaning level. The model is data-driven, theoretically sound, and empirically supported, and it makes predictions that open new research avenues in the domain of semantic processing. (PsycINFO Database Record

Affixation in semantic space: modeling morpheme meanings with compositional distributional semantics

Marelli, Marco;Baroni, Marco
2015

Abstract

The present work proposes a computational model of morpheme combination at the meaning level. The model moves from the tenets of distributional semantics, and assumes that word meanings can be effectively represented by vectors recording their co-occurrence with other words in a large text corpus. Given this assumption, affixes are modeled as functions (matrices) mapping stems onto derived forms. Derived-form meanings can be thought of as the result of a combinatorial procedure that transforms the stem vector on the basis of the affix matrix (e.g., the meaning of nameless is obtained by multiplying the vector of name with the matrix of -less). We show that this architecture accounts for the remarkable human capacity of generating new words that denote novel meanings, correctly predicting semantic intuitions about novel derived forms. Moreover, the proposed compositional approach, once paired with a whole-word route, provides a new interpretative framework for semantic transparency, which is here partially explained in terms of ease of the combinatorial procedure and strength of the transformation brought about by the affix. Model-based predictions are in line with the modulation of semantic transparency on explicit intuitions about existing words, response times in lexical decision, and morphological priming. In conclusion, we introduce a computational model to account for morpheme combination at the meaning level. The model is data-driven, theoretically sound, and empirically supported, and it makes predictions that open new research avenues in the domain of semantic processing. (PsycINFO Database Record
3
Marelli, Marco; Baroni, Marco
File in questo prodotto:
File Dimensione Formato  
marelli-baroni-fracss-preprint.pdf

Solo gestori archivio

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/108229
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 61
social impact