This article presents a hybrid fuzzy classifier for effective land-use/land-cover (LULC) mapping. It discusses a Bayesian method of incorporating spatial contextual information into the fuzzy noise classifier (FNC). The FNC was chosen as it detects noise using spectral information more efficiently than its fuzzy counterparts. The spatial information at the level of the second-order pixel neighbourhood was modelled using Markov random fields (MRFs). Spatial contextual information was added to the MRF using different adaptive interaction functions. These help to avoid over-smoothing at the class boundaries. The hybrid classifier was applied to advanced wide-field sensor (AWiFS) and linear imaging self-scanning sensor-III (LISS-III) images from a rural area in India. Validation was done with a LISS-IV image from the same area. The highest increase in accuracy among the adaptive functions was 4.1% and 2.1% for AWiFS and LISS-III images, respectively. The paper concludes that incorporation of spatial contextual information into the fuzzy noise classifier helps in achieving a more realistic and accurate classification of satellite images.

An effective hybrid approach to remote-sensing image classification

Harikumar, Aravind;
2015-01-01

Abstract

This article presents a hybrid fuzzy classifier for effective land-use/land-cover (LULC) mapping. It discusses a Bayesian method of incorporating spatial contextual information into the fuzzy noise classifier (FNC). The FNC was chosen as it detects noise using spectral information more efficiently than its fuzzy counterparts. The spatial information at the level of the second-order pixel neighbourhood was modelled using Markov random fields (MRFs). Spatial contextual information was added to the MRF using different adaptive interaction functions. These help to avoid over-smoothing at the class boundaries. The hybrid classifier was applied to advanced wide-field sensor (AWiFS) and linear imaging self-scanning sensor-III (LISS-III) images from a rural area in India. Validation was done with a LISS-IV image from the same area. The highest increase in accuracy among the adaptive functions was 4.1% and 2.1% for AWiFS and LISS-III images, respectively. The paper concludes that incorporation of spatial contextual information into the fuzzy noise classifier helps in achieving a more realistic and accurate classification of satellite images.
2015
11
Harikumar, Aravind; Anil, Kumar; Alfred, Stein; P. L. N., Raju; Y. V. N., Krishna Murthy
File in questo prodotto:
File Dimensione Formato  
A hybrid approach to RS image classification.pdf

Solo gestori archivio

Descrizione: Main article
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/105869
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact