Automated detection of faults and timely recovery are fundamental features for autonomous critical systems. Fault Detection and Identification (FDI) components are designed to detect faults on-board, by reading data from sensors and triggering predefined alarms. The design of effective FDI components is an extremely hard problem, also due to the lack of a complete theoretical foundation, and of precise specification and validation techniques. In this paper, we present the first formal framework for the design of FDI for discrete event systems. We propose a logical language for the specification of FDI requirements that accounts for a wide class of practical requirements, including novel aspects such as maximality and non-diagnosability. The language is equipped with a clear semantics based on temporal epistemic logic. We discuss how to validate the requirements and how to verify that a given FDI component satisfies them. Finally, we develop an algorithm for the synthesis of correct-by-construction FDI components, and report on the applicability of the framework on an industrial case-study coming from aerospace.
Formal Design of Fault Detection and Identification Components Using Temporal Epistemic Logic
Cimatti, Alessandro;Gario, Marco Elio Gustavo;
2014-01-01
Abstract
Automated detection of faults and timely recovery are fundamental features for autonomous critical systems. Fault Detection and Identification (FDI) components are designed to detect faults on-board, by reading data from sensors and triggering predefined alarms. The design of effective FDI components is an extremely hard problem, also due to the lack of a complete theoretical foundation, and of precise specification and validation techniques. In this paper, we present the first formal framework for the design of FDI for discrete event systems. We propose a logical language for the specification of FDI requirements that accounts for a wide class of practical requirements, including novel aspects such as maximality and non-diagnosability. The language is equipped with a clear semantics based on temporal epistemic logic. We discuss how to validate the requirements and how to verify that a given FDI component satisfies them. Finally, we develop an algorithm for the synthesis of correct-by-construction FDI components, and report on the applicability of the framework on an industrial case-study coming from aerospace.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione