A Simple Temporal Network with Uncertainty (STNU) is a structure for representing and reasoning about temporal constraints in domains where some temporal durations are not controlled by the executor. The most important property of an STNU is whether it is dynamically controllable (DC) whether there exists a strategy for executing the controllable time-points that guarantees that all constraints will be satisfied no matter how the uncontrollable durations turn out. This paper provides a novel mapping from STNUs to Timed Game Automata (TGAs) that: (1) explicates the deep theoretical relationships between STNUs and TGAs; and (2) enables the memoryless strategies generated from the TGA to be transformed into equivalent STNU execution strategies that reduce the real-time computational burden for the executor. The paper formally proves that the STNU-to-TGA encoding properly captures the execution semantics of STNUs.

Using Timed Game Automata to Synthesize Execution Strategies for Simple Temporal Networks with Uncertainty

Cimatti, Alessandro;Micheli, Andrea;Roveri M.
2014-01-01

Abstract

A Simple Temporal Network with Uncertainty (STNU) is a structure for representing and reasoning about temporal constraints in domains where some temporal durations are not controlled by the executor. The most important property of an STNU is whether it is dynamically controllable (DC) whether there exists a strategy for executing the controllable time-points that guarantees that all constraints will be satisfied no matter how the uncontrollable durations turn out. This paper provides a novel mapping from STNUs to Timed Game Automata (TGAs) that: (1) explicates the deep theoretical relationships between STNUs and TGAs; and (2) enables the memoryless strategies generated from the TGA to be transformed into equivalent STNU execution strategies that reduce the real-time computational burden for the executor. The paper formally proves that the STNU-to-TGA encoding properly captures the execution semantics of STNUs.
2014
28th AAAI Conference on Artificial Intelligence
Palo Alto, California, USA
AAAI Press
9781577356615
Cimatti, Alessandro; Hunsberger, L.; Micheli, Andrea; Roveri, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/99503
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact