Training sets of images for object recognition are the pillars on which classiers base their performances. We have built a framework to support the entire process of image and textual retrieval from search engines such that, giving an input keyword, calculate the statistical analysis, the semantic analysis and automatically build a training set. We have focused our attention on textual information and we have explored, with several experiments, three dierent approaches to automatically discriminate between positive and negative images: keyword position, tag frequency and semantic analysis. We present the best results for each approach.

Semantic-Analysis Object Recognition: Automatic Training Set Generation Using Textual Tags / Sami, Abduljalil Abdulhak; Walter, Riviera; Zeni, Nicola; Ferrario, Roberta; Matteo, Cristani; Cristani, Marco. - STAMPA. - 8926:(2015), pp. 309-322. (Intervento presentato al convegno CONTACT 2014 tenutosi a Zurigo nel 07/09/2014) [10.1007/978-3-319-16181-5_22].

Semantic-Analysis Object Recognition: Automatic Training Set Generation Using Textual Tags

Zeni, Nicola;Ferrario, Roberta;Matteo, Cristani;Cristani, Marco
2015-01-01

Abstract

Training sets of images for object recognition are the pillars on which classiers base their performances. We have built a framework to support the entire process of image and textual retrieval from search engines such that, giving an input keyword, calculate the statistical analysis, the semantic analysis and automatically build a training set. We have focused our attention on textual information and we have explored, with several experiments, three dierent approaches to automatically discriminate between positive and negative images: keyword position, tag frequency and semantic analysis. We present the best results for each approach.
2015
Computer Vision – ECCV 2014 Workshops
Berlin; Heidelberg
Springer-Verlag
978-3-319-16180-8
Sami, Abduljalil Abdulhak; Walter, Riviera; Zeni, Nicola; Ferrario, Roberta; Matteo, Cristani; Cristani, Marco
Semantic-Analysis Object Recognition: Automatic Training Set Generation Using Textual Tags / Sami, Abduljalil Abdulhak; Walter, Riviera; Zeni, Nicola; Ferrario, Roberta; Matteo, Cristani; Cristani, Marco. - STAMPA. - 8926:(2015), pp. 309-322. (Intervento presentato al convegno CONTACT 2014 tenutosi a Zurigo nel 07/09/2014) [10.1007/978-3-319-16181-5_22].
File in questo prodotto:
File Dimensione Formato  
Allegato_97613.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 447.47 kB
Formato Adobe PDF
447.47 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/98652
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact