The longevity of wireless sensor network (WSN) deployments is often crucial for real-time monitoring applications. Minimizing energy consumption by utilizing intelligent information processing is one of the main ways to prolong the lifetime of a network deployment. Data streams from the sensors need to be processed within the resource constraints of the sensing platforms to reduce the energy consumption associated with packet transmission. In this paper we carried out both simulation and real-world implementation of light-weight adaptive models to achieve a prolonged WSN lifetime. Specifically, we propose a Naive model that incurs virtually no cost with low memory footprint to realize this goal. Our results show that, despite its minimal complexity, the Naive model is robust when compared with other well-known algorithms used for prediction in WSNs. We show that our approach achieves up to 96\% communication reduction, within 0.2 degrees error bound with no significant loss in accuracy and it is comparable in performance to the more complex algorithms like Exponential Smoothing (ETS).

Prolonging the lifetime of wireless sensor networks using light-weight forecasting algorithms

Brunelli, Davide;
2013-01-01

Abstract

The longevity of wireless sensor network (WSN) deployments is often crucial for real-time monitoring applications. Minimizing energy consumption by utilizing intelligent information processing is one of the main ways to prolong the lifetime of a network deployment. Data streams from the sensors need to be processed within the resource constraints of the sensing platforms to reduce the energy consumption associated with packet transmission. In this paper we carried out both simulation and real-world implementation of light-weight adaptive models to achieve a prolonged WSN lifetime. Specifically, we propose a Naive model that incurs virtually no cost with low memory footprint to realize this goal. Our results show that, despite its minimal complexity, the Naive model is robust when compared with other well-known algorithms used for prediction in WSNs. We show that our approach achieves up to 96\% communication reduction, within 0.2 degrees error bound with no significant loss in accuracy and it is comparable in performance to the more complex algorithms like Exponential Smoothing (ETS).
2013
Intelligent Sensors, Sensor Networks and Information Processing, 2013 IEEE Eighth International Conference on
San Jose, CA, USA
ACM/IEEE
9781467354998
F. A., Aderohunmu; G., Paci; Brunelli, Davide; J. D., Deng; L., Benini
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/97294
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact