Highly dynamic and heterogeneous distributed systems are challenging today’s middleware technologies. Existing middleware paradigms are unable to deliver on their most central promise, which is offering interoperability. In this paper, we argue for the need to dynamically synthesise distributed system infrastructures according to the current operating environment, thereby generating “Emergent Middleware” to mediate interactions among heterogeneous networked systems that interact in an ad hoc way. The paper outlines the overall architecture of Enablers underlying Emergent Middleware, and in particular focuses on the key role of learning in supporting such a process, spanning statistical learning to infer the semantics of networked system functions and automata learning to extract the related behaviours of networked systems.
Scheda prodotto non validato
I dati visualizzati non sono stati ancora sottoposti a validazione formale da parte dello Staff di IRIS, ma sono stati ugualmente trasmessi al Sito Docente Cineca (Loginmiur).
Titolo: | Machine Learning for Emergent Middleware |
Autori: | A. Bennaceur; F. Howar; V. Issarny; R. Johansson; A. Moschitti; R. Spalazzese; B. Steffen; D. Sykes |
Autori Unitn: | |
Titolo del volume contenente il saggio: | Proceedings of the Joint Workshop on Intelligent Methods for Software System Engineering (JIMSE) |
Luogo di edizione: | Francia |
Casa editrice: | ECAI 2012 |
Anno di pubblicazione: | 2012 |
Codice identificativo Scopus: | 2-s2.0-84904674328 |
ISBN: | 978-3-642-45259-8 |
Handle: | http://hdl.handle.net/11572/95275 |
Appare nelle tipologie: | 04.1 Saggio in atti di convegno (Paper in proceedings) |