The notion of heavy hitters—items that make up a large fraction of the population—has been successfully used in a variety of applications across sensor and RFID monitoring, network data analysis, event mining, and more. Yet this notion often fails to capture the semantics we desire when we observe data in the form of correlated pairs. Here, we are interested in items that are conditionally frequent: when a particular item is frequent within the context of its parent item. In this work, we introduce and formalize the notion of Conditional Heavy Hitters to identify such items, with applications in network monitoring, and Markov chain modeling. We introduce several streaming algorithms that allow us to find conditional heavy hitters efficiently, and provide analytical results. Different algorithms are successful for different input characteristics. We perform experimental evaluations to demonstrate the efficacy of our methods, and to study which algorithms are most suited for different types of data

Finding Interesting Correlations with Conditional Heavy Hitters.

Mirylenka, Katsiaryna;Palpanas, Themistoklis;
2013-01-01

Abstract

The notion of heavy hitters—items that make up a large fraction of the population—has been successfully used in a variety of applications across sensor and RFID monitoring, network data analysis, event mining, and more. Yet this notion often fails to capture the semantics we desire when we observe data in the form of correlated pairs. Here, we are interested in items that are conditionally frequent: when a particular item is frequent within the context of its parent item. In this work, we introduce and formalize the notion of Conditional Heavy Hitters to identify such items, with applications in network monitoring, and Markov chain modeling. We introduce several streaming algorithms that allow us to find conditional heavy hitters efficiently, and provide analytical results. Different algorithms are successful for different input characteristics. We perform experimental evaluations to demonstrate the efficacy of our methods, and to study which algorithms are most suited for different types of data
2013
Proceedings of the 29th IEEE International Conference on Data Engineering
AA. VV.
Washington
IEEE
Mirylenka, Katsiaryna; Palpanas, Themistoklis; G., Cormode; D., Srivastava
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/95226
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact