The notion of heavy hitters—items that make up a large fraction of the population—has been successfully used in a variety of applications across sensor and RFID monitoring, network data analysis, event mining, and more. Yet this notion often fails to capture the semantics we desire when we observe data in the form of correlated pairs. Here, we are interested in items that are conditionally frequent: when a particular item is frequent within the context of its parent item. In this work, we introduce and formalize the notion of Conditional Heavy Hitters to identify such items, with applications in network monitoring, and Markov chain modeling. We introduce several streaming algorithms that allow us to find conditional heavy hitters efficiently, and provide analytical results. Different algorithms are successful for different input characteristics. We perform experimental evaluations to demonstrate the efficacy of our methods, and to study which algorithms are most suited for different types of data
Scheda prodotto non validato
I dati visualizzati non sono stati ancora sottoposti a validazione formale da parte dello Staff di IRIS, ma sono stati ugualmente trasmessi al Sito Docente Cineca (Loginmiur).
Titolo: | Finding Interesting Correlations with Conditional Heavy Hitters. |
Autori: | Mirylenka, Katsiaryna; Palpanas, Themistoklis; G., Cormode; D., Srivastava |
Autori Unitn: | |
Autore/i del libro: | AA. VV. |
Titolo del volume contenente il saggio: | Proceedings of the 29th IEEE International Conference on Data Engineering |
Luogo di edizione: | Washington |
Casa editrice: | IEEE |
Anno di pubblicazione: | 2013 |
Codice identificativo Scopus: | 2-s2.0-84885103403 |
Codice identificativo ISI: | WOS:000324994600007 |
Handle: | http://hdl.handle.net/11572/95226 |
Appare nelle tipologie: | 04.1 Saggio in atti di convegno (Paper in proceedings) |