Textures are one of the basic features in visual searching and computational vision. In the literature, most of the attention has been focussed on the texture features with minimal consideration of the noise models. In this paper we investigated the problem of texture classification from a maximum likelihood perspective. We took into account the texture model, the noise distribution, and the inter-dependence of the texture features. Our investigation showed that the real noise distribution is closer to an Exponential than a Gaussian distribution, and that the L1 metric has a better retrieval rate than L2. We also proposed the Cauchy metric as an alternative for both the L1 and L2 metrics. Furthermore, we provided a direct method for deriving an optimal distortion measure from the real noise distribution, which experimentally provides consistently improved results over the other metrics. We conclude with results and discussions on an international texture database. © 2000 IEEE.

Wavelet Based Texture Classification

Sebe, Niculae;
2000-01-01

Abstract

Textures are one of the basic features in visual searching and computational vision. In the literature, most of the attention has been focussed on the texture features with minimal consideration of the noise models. In this paper we investigated the problem of texture classification from a maximum likelihood perspective. We took into account the texture model, the noise distribution, and the inter-dependence of the texture features. Our investigation showed that the real noise distribution is closer to an Exponential than a Gaussian distribution, and that the L1 metric has a better retrieval rate than L2. We also proposed the Cauchy metric as an alternative for both the L1 and L2 metrics. Furthermore, we provided a direct method for deriving an optimal distortion measure from the real noise distribution, which experimentally provides consistently improved results over the other metrics. We conclude with results and discussions on an international texture database. © 2000 IEEE.
2000
Proceedings of 15th International Conference on Pattern Recognition
Los Alamitos
IEEE COMPUTER SOC
Sebe, Niculae; M. S., Lew
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/94968
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact