In this work, the active learning approach is adopted to address the problem of training sample collection for the estimation of chemical parameters for product quality control from spectroscopic data. In particular, two strategies for support vector regression (SVR) are proposed. The first method select samples distant in the kernel space from the current support vectors, while the second one uses a pool of regressors in order to choose the samples with the greater disagreements between the different regressors. The experimental results on two real data sets show the effectiveness of the proposed solutions. © 2012 IEEE.

SVR Active Learning for Product Quality Control

Melgani, Farid;Pasolli, Edoardo;
2012-01-01

Abstract

In this work, the active learning approach is adopted to address the problem of training sample collection for the estimation of chemical parameters for product quality control from spectroscopic data. In particular, two strategies for support vector regression (SVR) are proposed. The first method select samples distant in the kernel space from the current support vectors, while the second one uses a pool of regressors in order to choose the samples with the greater disagreements between the different regressors. The experimental results on two real data sets show the effectiveness of the proposed solutions. © 2012 IEEE.
2012
Proc. of the 11th International Conference on Information Science, Signal Processing and their Applications
New York
IEEE
9781467303828
F., Douak; Melgani, Farid; Pasolli, Edoardo; N., Benoudjit
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/93940
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact