In the last years, the advent of unmanned aerial vehicles (UAVs) for civilian remote sensing purposes has generated a lot of interest because of the various new applications they can offer. One of them is represented by the automatic detection and counting of cars. In this paper, we propose a novel car detection method. It starts with a feature extraction process based on scalar invariant feature transform (SIFT) thanks to which a set of keypoints is identified in the considered image and opportunely described. Successively, the process discriminates between keypoints assigned to cars and those associated with all remaining objects by means of a support vector machine (SVM) classifier. Experimental results have been conducted on a real UAV scene. They show how the proposed method allows providing interesting detection performances. © 2012 IEEE.

A SIFT-SVM Method for Detecting Cars in UAV Images

Melgani, Farid
2012-01-01

Abstract

In the last years, the advent of unmanned aerial vehicles (UAVs) for civilian remote sensing purposes has generated a lot of interest because of the various new applications they can offer. One of them is represented by the automatic detection and counting of cars. In this paper, we propose a novel car detection method. It starts with a feature extraction process based on scalar invariant feature transform (SIFT) thanks to which a set of keypoints is identified in the considered image and opportunely described. Successively, the process discriminates between keypoints assigned to cars and those associated with all remaining objects by means of a support vector machine (SVM) classifier. Experimental results have been conducted on a real UAV scene. They show how the proposed method allows providing interesting detection performances. © 2012 IEEE.
2012
Proc. of the IEEE-International Geoscience and Remote Sensing Symposium IGARSS-2012
New York
IEEE
T., Moranduzzo; Melgani, Farid
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/93935
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 56
  • OpenAlex ND
social impact