In the context of Social Welfare and Choquet integration, we briefly review, on the one hand, the classical Gini inequality index for populations of n ≥ 2 individuals, including the associated Lorenz area formula, and on the other hand, the k-additivity framework for Choquet integration introduced by Grabisch, particularly in the additive and 2-additive symmetric cases.We then show that any 2-additive symmetric Choquet integral can be written as the difference between the arithmetic mean and a multiple of the classical Gini inequality index, with a given interval constraint on the multiplicity parameter. In the special case of positive parameter values this result corresponds to the well-known Ben Porath and Gilboa’s formula for Weymark’s generalized Gini wel
The Generalized Gini Welfare Function in the Framework of Symmetric Choquet Integration / Bortot, Silvia; Marques Pereira, Ricardo Alberto. - STAMPA. - 305(2013), pp. 15-26.
Titolo: | The Generalized Gini Welfare Function in the Framework of Symmetric Choquet Integration |
Autori: | Bortot, Silvia; Marques Pereira, Ricardo Alberto |
Autori Unitn: | |
Titolo del volume contenente il saggio: | Multicriteria and Multiagent Decision Making with Applications to Economic and Social Sciences |
Luogo di edizione: | Heidelberg |
Casa editrice: | Springer |
Anno di pubblicazione: | 2013 |
ISBN: | 9783642356346 |
Handle: | http://hdl.handle.net/11572/93484 |
Citazione: | The Generalized Gini Welfare Function in the Framework of Symmetric Choquet Integration / Bortot, Silvia; Marques Pereira, Ricardo Alberto. - STAMPA. - 305(2013), pp. 15-26. |
Appare nelle tipologie: | 02.1 Saggio su volume miscellaneo o Capitolo di libro (Essay or Book Chapter) |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Bortot-MarquesPereira SFSC.305-2013.pdf | Versione editoriale (Publisher’s layout) | Tutti i diritti riservati (All rights reserved) | Administrator |