For any ane-variety code we show how to construct an ideal whose solutions correspond to codewords with any assigned weight. We use our ideal and a geometric characterization to determine the number of small-weight codewords for some families of Hermitian codes over any Fq. In particular, we determine the number of minimum-weight code- words for all Hermitian codes with d q. For such codes we also count some other small-weight codewords.

On the weights of affine-variety codes and some Hermitian codes

Sala, Massimiliano;Marcolla, Chiara;
2011-01-01

Abstract

For any ane-variety code we show how to construct an ideal whose solutions correspond to codewords with any assigned weight. We use our ideal and a geometric characterization to determine the number of small-weight codewords for some families of Hermitian codes over any Fq. In particular, we determine the number of minimum-weight code- words for all Hermitian codes with d q. For such codes we also count some other small-weight codewords.
2011
WCC 2011 - Workshop on coding and cryptography
Le Chesnay Cedex
INRIA: INSTITUT NATIONAL EN INFORMATIQUE ET EN AUTOMATIQUE
Sala, Massimiliano; Marcolla, Chiara; M., Pellegrini
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/92288
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact