Model-driven data acquisition techniques aim at reducing the amount of data reported, and therefore the energy consumed, in wireless sensor networks (WSNs). At each node, a model predicts the sampled data; when the latter deviate from the current model, a new model is generated and sent to the data sink. However, experiences in real-world deployments have not been reported in the literature. Evaluation typically focuses solely on the quantity of data reports suppressed at source nodes: the interplay between data modeling and the underlying network protocols is not analyzed. In contrast, this paper investigates in practice whether i) model-driven data acquisition works in a real application; ii) the energy savings it enables in theory are still worthwhile once the network stack is taken into account. We do so in the concrete setting of a WSN-based system for adaptive lighting in road tunnels. Our novel modeling technique, Derivative-Based Prediction (DBP), suppresses up to 99% of the data reports, while meeting the error tolerance of our application. DBP is considerably simpler than competing techniques, yet performs better in our real setting. Experiments in both an indoor testbed and an operational road tunnel show also that, once the network stack is taken into consideration, DBP triples the WSN lifetime—a remarkable result per se, but a far cry from the aforementioned 99% data suppression. This suggests that, to fully exploit the energy savings enabled by data modeling techniques, a coordinated operation of the data and network layers is necessary.

What Does Model-Driven Data Acquisition Really Achieve in Wireless Sensor Networks?

Raza, Usman;Palpanas, Themistoklis;Picco, Gian Pietro
2012-01-01

Abstract

Model-driven data acquisition techniques aim at reducing the amount of data reported, and therefore the energy consumed, in wireless sensor networks (WSNs). At each node, a model predicts the sampled data; when the latter deviate from the current model, a new model is generated and sent to the data sink. However, experiences in real-world deployments have not been reported in the literature. Evaluation typically focuses solely on the quantity of data reports suppressed at source nodes: the interplay between data modeling and the underlying network protocols is not analyzed. In contrast, this paper investigates in practice whether i) model-driven data acquisition works in a real application; ii) the energy savings it enables in theory are still worthwhile once the network stack is taken into account. We do so in the concrete setting of a WSN-based system for adaptive lighting in road tunnels. Our novel modeling technique, Derivative-Based Prediction (DBP), suppresses up to 99% of the data reports, while meeting the error tolerance of our application. DBP is considerably simpler than competing techniques, yet performs better in our real setting. Experiments in both an indoor testbed and an operational road tunnel show also that, once the network stack is taken into consideration, DBP triples the WSN lifetime—a remarkable result per se, but a far cry from the aforementioned 99% data suppression. This suggests that, to fully exploit the energy savings enabled by data modeling techniques, a coordinated operation of the data and network layers is necessary.
2012
Proceedings of the IEEE Int. Conf. on Pervasive Computing and Communications (PerCom 2012)
AA. VV.
New York
IEEE Computer Society
9781467302562
Raza, Usman; A., Camerra; A. L., Murphy; Palpanas, Themistoklis; Picco, Gian Pietro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/91475
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 39
social impact