We are interested in the problem of discourse parsing of textual documents. We present a novel end-to-end discourse parser that, given a plain text document in input, identifies the discourse relations in the text, assigns them a semantic label and detects discourse arguments spans. The parsing architecture is based on a cascade of decisions supported by Conditional Random Fields (CRF). We train and evaluate three different parsers using the PDTB corpus. The three system versions are compared to evaluate their robustness with respect to deep/shallow and automatically extracted syntactic features.
End-to-End Discourse Parser Evaluation
Ghosh, Sucheta;Tonelli, Sara;Riccardi, Giuseppe;
2011-01-01
Abstract
We are interested in the problem of discourse parsing of textual documents. We present a novel end-to-end discourse parser that, given a plain text document in input, identifies the discourse relations in the text, assigns them a semantic label and detects discourse arguments spans. The parsing architecture is based on a cascade of decisions supported by Conditional Random Fields (CRF). We train and evaluate three different parsers using the PDTB corpus. The three system versions are compared to evaluate their robustness with respect to deep/shallow and automatically extracted syntactic features.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione