We investigate two publicly available web knowledge bases, Wikipedia and Yago, in an attempt to leverage semantic information and increase the performance level of a state-of-the-art coreference resolution (CR) engine. We extract semantic compatibility and aliasing information from Wikipedia and Yago, and incorporate it into a CR system. We show that using such knowledge with no disambiguation and filtering does not bring any improvement over the baseline, mirroring the previous findings (Ponzetto and Poesio 2009). We propose, therefore, a number of solutions to reduce the amount of noise coming from web resources: using disambiguation tools for Wikipedia, pruning Yago to eliminate the most generic categories and imposing additional constraints on affected mentions. Our evaluation experiments on the ACE-02 corpus show that the knowledge, extracted from Wikipedia and Yago, improves our system's performance by 2-3 percentage points.

Disambiguation and filtering methods in using web knowledge for coreference resolution

Uryupina, Olga;Poesio, Massimo;Tymoshenko, Kateryna
2011

Abstract

We investigate two publicly available web knowledge bases, Wikipedia and Yago, in an attempt to leverage semantic information and increase the performance level of a state-of-the-art coreference resolution (CR) engine. We extract semantic compatibility and aliasing information from Wikipedia and Yago, and incorporate it into a CR system. We show that using such knowledge with no disambiguation and filtering does not bring any improvement over the baseline, mirroring the previous findings (Ponzetto and Poesio 2009). We propose, therefore, a number of solutions to reduce the amount of noise coming from web resources: using disambiguation tools for Wikipedia, pruning Yago to eliminate the most generic categories and imposing additional constraints on affected mentions. Our evaluation experiments on the ACE-02 corpus show that the knowledge, extracted from Wikipedia and Yago, improves our system's performance by 2-3 percentage points.
Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence
Palo Alto, CA, USA
American Association for Artificial Intelligence (AAAI)
9781577355014
Uryupina, Olga; Poesio, Massimo; C., Giuliano; Tymoshenko, Kateryna
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/89837
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact