In this paper, we approach the problem of interactively querying and recommending composition knowledge in the form of re-usable composition patterns. The goal is that of aiding developers in their composition task. We specifically focus on mashups and browser-based modeling tools, a domain that increasingly targets also people without profound programming experience. The problem is generally complex, in that we may need to match possibly complex patterns on-the-fly and in an approximate fashion. We describe an architecture and a pattern knowledge base that are distributed over client and server and a set of client-side search algorithms for the retrieval of step-by-step recommendations. The performance evaluation of our prototype implementation demonstrates that - if sensibly structured - even complex recommendations can be efficiently computed inside the client browser. © 2011 Springer-Verlag

Efficient, Interactive Recommendation of Mashup Composition Knowledge

Daniel, Florian;Casati, Fabio
2011-01-01

Abstract

In this paper, we approach the problem of interactively querying and recommending composition knowledge in the form of re-usable composition patterns. The goal is that of aiding developers in their composition task. We specifically focus on mashups and browser-based modeling tools, a domain that increasingly targets also people without profound programming experience. The problem is generally complex, in that we may need to match possibly complex patterns on-the-fly and in an approximate fashion. We describe an architecture and a pattern knowledge base that are distributed over client and server and a set of client-side search algorithms for the retrieval of step-by-step recommendations. The performance evaluation of our prototype implementation demonstrates that - if sensibly structured - even complex recommendations can be efficiently computed inside the client browser. © 2011 Springer-Verlag
2011
Proceedings of ICSOC 2011
AA. VV.
Berlin
Springer
S. R., Chowdhury; Daniel, Florian; Casati, Fabio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/89631
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 24
  • OpenAlex ND
social impact