In this work, we propose a framework to help in the design of the ground-truth for the classification of remote sensing images. It consists first to segment the considered image by means of a level set method and then to extract the segments characterized by the largest numbers of pixels. Afterward, the selected segments are labeled by a human user. Experimental results obtained on a very high resolution image show encouraging performances of the proposed framework. © 2011 IEEE.

Ground-Truth Assisted Design for Remote Sensing Image Classification

Pasolli, Edoardo;Melgani, Farid
2011-01-01

Abstract

In this work, we propose a framework to help in the design of the ground-truth for the classification of remote sensing images. It consists first to segment the considered image by means of a level set method and then to extract the segments characterized by the largest numbers of pixels. Afterward, the selected segments are labeled by a human user. Experimental results obtained on a very high resolution image show encouraging performances of the proposed framework. © 2011 IEEE.
2011
Proceedings of the IEEE-International Geoscience and Remote Sensing Symposium IGARSS-2011
New York
IEEE
9781457710056
Pasolli, Edoardo; Melgani, Farid
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/88949
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact