Spoken Language Understanding aims at mapping a natural language spoken sentence into a semantic representation. In the last decade two main approaches have been pursued: generative and discriminative models. The former is more robust to overfitting whereas the latter is more robust to many irrelevant features. Additionally, the way in which these approaches encode prior knowledge is very different and their relative performance changes based on the task. In this paper we describe a machine learning framework where both models are used: a generative model produces a list of ranked hypotheses whereas a discriminative model based on structure kernels and Support Vector Machines, re-ranks such list. We tested our approach on the MEDIA corpus (human-machine dialogs) and on a new corpus (human-machine and human-human dialogs) produced in the European LUNA project. The results show a large improvement on the state-of-the-art in concept segmentation and labeling. © 2009 Association for Comput...

Re-Ranking Models for Spoken Language Understanding

Dinarelli, Marco;Moschitti, Alessandro;Riccardi, Giuseppe
2009-01-01

Abstract

Spoken Language Understanding aims at mapping a natural language spoken sentence into a semantic representation. In the last decade two main approaches have been pursued: generative and discriminative models. The former is more robust to overfitting whereas the latter is more robust to many irrelevant features. Additionally, the way in which these approaches encode prior knowledge is very different and their relative performance changes based on the task. In this paper we describe a machine learning framework where both models are used: a generative model produces a list of ranked hypotheses whereas a discriminative model based on structure kernels and Support Vector Machines, re-ranks such list. We tested our approach on the MEDIA corpus (human-machine dialogs) and on a new corpus (human-machine and human-human dialogs) produced in the European LUNA project. The results show a large improvement on the state-of-the-art in concept segmentation and labeling. © 2009 Association for Comput...
2009
Prooceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics
Athens, Greece
TEHNOGRAFIA DIGITAL PRESS, Athens
9781932432169
Dinarelli, Marco; Moschitti, Alessandro; Riccardi, Giuseppe
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/79395
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact