The exploitation of Extremely High Frequency (EHF) bands for broadband satellite communications really represents a challenging frontier for aerospace R&D. In few time, ALPHASAT mission (through the Technology Demonstration Payload 5) should test Q/V band (40-50GHz) digital satellite transmission. Moreover, a lot of effort is spent to study the feasibility of broadband links in W-band (70-110GHz). This paper is devoted at showing the most relevant challenges to be faced in the effective PHY-layer design of W-band satellite connections. Some practical solutions will be analyzed together with a look to future solutions in phase of testing. From the proposed analysis, it is clear that effects of nonlinear distortions and phase noise should be adequately counteracted by considering spectrally-efficient solutions. In such a perspective, it seems that efficient coded modulations employed together with appropriate pulse shaping can be regarded as effective PHY-layer solutions for future high-...
Overview of PHY-layer Design Challenges and Viable Solutions in W-band Broadband Satellite Communications
Sacchi, Claudio;
2010-01-01
Abstract
The exploitation of Extremely High Frequency (EHF) bands for broadband satellite communications really represents a challenging frontier for aerospace R&D. In few time, ALPHASAT mission (through the Technology Demonstration Payload 5) should test Q/V band (40-50GHz) digital satellite transmission. Moreover, a lot of effort is spent to study the feasibility of broadband links in W-band (70-110GHz). This paper is devoted at showing the most relevant challenges to be faced in the effective PHY-layer design of W-band satellite connections. Some practical solutions will be analyzed together with a look to future solutions in phase of testing. From the proposed analysis, it is clear that effects of nonlinear distortions and phase noise should be adequately counteracted by considering spectrally-efficient solutions. In such a perspective, it seems that efficient coded modulations employed together with appropriate pulse shaping can be regarded as effective PHY-layer solutions for future high-...I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



