The double bounce effect of buildings is an important characteristic in very high resolution (VHR) synthetic aperture radar (SAR) images. It typically appears as a strong scattering mechanism caused by a corner reflector, which is made of the front wall of a building and its surrounding ground area. In order to exploit this feature effectively for automatic building detection and reconstruction techniques, empirical studies on real VHR SAR images need to investigate the stability of the double bounce mechanism with respect to changes in the viewing configuration and material properties. Thus, this paper addresses the analysis of the relation between the double bounce effect and the aspect angle of a building for two different ground materials, by analyzing two TerraSAR-X VHR spaceborne SAR images. Furthermore, we compare the empirical results with the simulations obtained by theoretical electromagnetic models. We show that if the buildings are surrounded by asphalt, the strength of the...

Analysis of the reliability of the double bounce scattering mechanism for detecting buildings in VHR SAR images

Brunner, Dominik;Bruzzone, Lorenzo;Ferro, Adamo;
2009-01-01

Abstract

The double bounce effect of buildings is an important characteristic in very high resolution (VHR) synthetic aperture radar (SAR) images. It typically appears as a strong scattering mechanism caused by a corner reflector, which is made of the front wall of a building and its surrounding ground area. In order to exploit this feature effectively for automatic building detection and reconstruction techniques, empirical studies on real VHR SAR images need to investigate the stability of the double bounce mechanism with respect to changes in the viewing configuration and material properties. Thus, this paper addresses the analysis of the relation between the double bounce effect and the aspect angle of a building for two different ground materials, by analyzing two TerraSAR-X VHR spaceborne SAR images. Furthermore, we compare the empirical results with the simulations obtained by theoretical electromagnetic models. We show that if the buildings are surrounded by asphalt, the strength of the...
2009
Proc. IEEE Radar Conference
New York
IEEE
9781424428717
Brunner, Dominik; Bruzzone, Lorenzo; Ferro, Adamo; G., Lemoine
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/78860
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact