Selection of a suitable classifier fusion scheme in the design of multiple classifier systems (MCSs) is a tedious task. To meet this we propose a neuro-fuzzy fusion (NFF) method for fusing the responses of a set of fuzzy classifiers. In the proposed method the output of the considered classifiers are fed to a neural network which performs the fusion task. Five labeled data sets, of which two are from remote sensing images, have been used for the performance comparison of various MCSs. Experimental study revealed the improved classification capability of the proposed NFF based MCS yielding consistently better results for all data sets. © 2006 IEEE.

Neuro-Fuzzy Fusion: A New Approach to Multiple Classifier System

Bruzzone, Lorenzo
2006-01-01

Abstract

Selection of a suitable classifier fusion scheme in the design of multiple classifier systems (MCSs) is a tedious task. To meet this we propose a neuro-fuzzy fusion (NFF) method for fusing the responses of a set of fuzzy classifiers. In the proposed method the output of the considered classifiers are fed to a neural network which performs the fusion task. Five labeled data sets, of which two are from remote sensing images, have been used for the performance comparison of various MCSs. Experimental study revealed the improved classification capability of the proposed NFF based MCS yielding consistently better results for all data sets. © 2006 IEEE.
2006
9th International Conference on Information Technology: ICIT 2006: Proceedings
Los Alamitos, CA
IEEE
9780769526355
S. K., Meher; A., Ghosh; B. U., Shankar; Bruzzone, Lorenzo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/78841
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact