We view matching as an operation that takes two graph-like structures (e.g., lightweight ontologies) and produces an alignment between the nodes of these graphs that correspond semantically to each other. Semantic matching is based on two ideas: (i) we discover an alignment by computing semantic relations (e.g., equivalence, more general); (ii) we determine semantic relations by analyzing the meaning (concepts, not labels) which is codified in the entities and the structures of ontologies. In this chapter, we first overview the state of the art in the ontology matching field. Then we present basic and optimized algorithms for semantic matching as well as their implementation within the S-Match system. Finally, we evaluate S-Match against state of the art systems, thereby justifying empirically the strength of the approach. © 2010 Springer-Verlag Berlin Heidelberg.
Semantic Matching with S-Match
Shvaiko, Pavel;Giunchiglia, Fausto;Yatskevich, Mikalai
2010-01-01
Abstract
We view matching as an operation that takes two graph-like structures (e.g., lightweight ontologies) and produces an alignment between the nodes of these graphs that correspond semantically to each other. Semantic matching is based on two ideas: (i) we discover an alignment by computing semantic relations (e.g., equivalence, more general); (ii) we determine semantic relations by analyzing the meaning (concepts, not labels) which is codified in the entities and the structures of ontologies. In this chapter, we first overview the state of the art in the ontology matching field. Then we present basic and optimized algorithms for semantic matching as well as their implementation within the S-Match system. Finally, we evaluate S-Match against state of the art systems, thereby justifying empirically the strength of the approach. © 2010 Springer-Verlag Berlin Heidelberg.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



