The domain of Digital Libraries presents specific challenges for unsupervised information extraction to support both the automatic classification of documents and the enhancement of userspsila navigation in the digital content. In this paper, we propose a combined use of machine learning techniques (i.e. Support Vector Machines) and Natural Language Processing techniques (i.e. Stanford NLP parser) to tackle the problem of unsupervised key-phrases extraction from scientific papers. The proposed method strongly depends on the robust structural properties of a scientific paper as well as on the lexical knowledge that we are able to mine from its text. For the experimental assessment we have use a subset of ACM papers in the Computer Science domain containing 400 documents. Preliminary evaluation of the approach shows promising result that improves - on the same data-set - on state-of-the-art Bayesian learning system KEA from a minimum 27% to a maximum 77% depending on KEA parameters tuning and specific evaluation set. Our assessment is performed by comparison with key-phrases assigned by human experts in the specific domain and freely available through ACM portal.
Titolo: | Key-Phrases Extraction from Scientific Papers using Domain and Linguistic Knowledge |
Autori: | Marchese, Maurizio; Krapivin, Mikalai; A., Yadrantsau; Liang, Yanchun |
Autori Unitn: | |
Titolo del volume contenente il saggio: | Third International Conference on Digital Information Management |
Luogo di edizione: | New York, N.Y. |
Casa editrice: | IEEE |
Anno di pubblicazione: | 2008 |
Codice identificativo Scopus: | 2-s2.0-62949214913 |
Codice identificativo ISI: | WOS:000272049500017 |
ISBN: | 9781424429172 |
Handle: | http://hdl.handle.net/11572/75088 |
Appare nelle tipologie: | 04.1 Saggio in atti di convegno (Paper in proceedings) |