In this paper, we address the problem of classification of hyperspectral remote-sensing images (in the original hyperdimensional feature space) by Support Vector Machines (SVMs). In particular, we investigate the effectiveness of SVMs in terms of classification accuracy, computational time and stability to parameter setting. Experiments, carried out on a standard AVIRIS hyperspectral data set, include a comparison with two other widely used nonparametric approaches, i.e., the K-nn and the Radial Basis Function (RBF) neural networks classifiers. The obtained results point out interesting properties of SVMs in hyperdimensional feature spaces and suggest them as a promising tool to classify hyperspectral remote-sensing images.

Support vector machines for classification of hyperspectral remote-sensing images

Melgani, Farid;Bruzzone, Lorenzo
2002-01-01

Abstract

In this paper, we address the problem of classification of hyperspectral remote-sensing images (in the original hyperdimensional feature space) by Support Vector Machines (SVMs). In particular, we investigate the effectiveness of SVMs in terms of classification accuracy, computational time and stability to parameter setting. Experiments, carried out on a standard AVIRIS hyperspectral data set, include a comparison with two other widely used nonparametric approaches, i.e., the K-nn and the Radial Basis Function (RBF) neural networks classifiers. The obtained results point out interesting properties of SVMs in hyperdimensional feature spaces and suggest them as a promising tool to classify hyperspectral remote-sensing images.
2002
IEEE 2002 Int. Geoscience and Remote Sensing Symposium
Stati Uniti d'America
IEEE
Melgani, Farid; Bruzzone, Lorenzo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/74963
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 78
  • ???jsp.display-item.citation.isi??? 48
  • OpenAlex ND
social impact