Social attention behavior offers vital cues towards inferring one's personality traits from interactive settings such as round-table meetings and cocktail parties. Head orientation is typically employed as a proxy for determining the social attention direction when faces are captured at low-resolution. Recently, multi-task learning has been proposed to robustly compute head pose under perspective and scale-based facial appearance variations when multiple, distant and large field-of-view cameras are employed for visual analysis in smart-room applications. In this paper, we evaluate the effectiveness of an SVM-based MTL (SVM+MTL) framework with various facial descriptors (KL, HOG, LBP, etc.). The KL+HOG feature combination is found to produce the best classification performance, with SVM+MTL outperforming classical SVM irrespective of the feature used.

Evaluating Multi-task Learning for Multi-view Head-pose Classification in Interactive Environments

Yan, Yan;Subramanian, Ramanathan;E. Ricci;Lanz, Oswald;Sebe, Niculae
2014-01-01

Abstract

Social attention behavior offers vital cues towards inferring one's personality traits from interactive settings such as round-table meetings and cocktail parties. Head orientation is typically employed as a proxy for determining the social attention direction when faces are captured at low-resolution. Recently, multi-task learning has been proposed to robustly compute head pose under perspective and scale-based facial appearance variations when multiple, distant and large field-of-view cameras are employed for visual analysis in smart-room applications. In this paper, we evaluate the effectiveness of an SVM-based MTL (SVM+MTL) framework with various facial descriptors (KL, HOG, LBP, etc.). The KL+HOG feature combination is found to produce the best classification performance, with SVM+MTL outperforming classical SVM irrespective of the feature used.
2014
Proceedings of the International Conference on Pattern Recognition (ICPR’14)
Piscataway
Attuale:IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC,
9781479952083
Yan, Yan; Subramanian, Ramanathan; Ricci, E.; Lanz, Oswald; Sebe, Niculae
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/67789
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact