General, especially spectral, features of compact normal operators in quaternionic Hilbert spaces are studied and some results are established which generalize well-known properties of compact normal operators in complex Hilbert spaces. More precisely, it is proved that the norm of such an operator always coincides with the maximum of the set of absolute values of the eigenvalues (exploiting the notion of spherical eigenvalue). Moreover the structure of the spectral decomposition of a generic compact normal operator T is discussed also proving a spectral characterization theorem for compact normal operators.

Spectral properties of compact normal quaternionic operators / Ghiloni, Riccardo; Moretti, Valter; Perotti, Alessandro. - STAMPA. - (2014), pp. 133-143. [10.1007/978-3-319-08771-9_9]

Spectral properties of compact normal quaternionic operators

Ghiloni, Riccardo;Moretti, Valter;Perotti, Alessandro
2014-01-01

Abstract

General, especially spectral, features of compact normal operators in quaternionic Hilbert spaces are studied and some results are established which generalize well-known properties of compact normal operators in complex Hilbert spaces. More precisely, it is proved that the norm of such an operator always coincides with the maximum of the set of absolute values of the eigenvalues (exploiting the notion of spherical eigenvalue). Moreover the structure of the spectral decomposition of a generic compact normal operator T is discussed also proving a spectral characterization theorem for compact normal operators.
2014
Hypercomplex Analysis: New perspectives and applications
Basel
Basel [etc.] : Birkhäuser, 2007-
9783319087702
Ghiloni, Riccardo; Moretti, Valter; Perotti, Alessandro
Spectral properties of compact normal quaternionic operators / Ghiloni, Riccardo; Moretti, Valter; Perotti, Alessandro. - STAMPA. - (2014), pp. 133-143. [10.1007/978-3-319-08771-9_9]
File in questo prodotto:
File Dimensione Formato  
CompactNormal.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 249.28 kB
Formato Adobe PDF
249.28 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/67659
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 25
social impact