This paper presents a novel method to generate a hypothesis set of class-independent object regions. It has been shown that such object regions can be used to focus computer vision techniques on the parts of an image that matter most leading to significant improvements in both object localisation and semantic segmentation in recent years. Of course, the higher quality of class-independent object regions, the better subsequent computer vision algorithms can perform. In this paper we focus on generating higher quality object hypotheses. We start from an oversegmentation for which we propose to extract a wide variety of region-features. We group regions together in a hierarchical fashion, for which we train a Random Forest which predicts at each stage of the hierarchy the best possible merge. Hence unlike other approaches, we use relatively powerful features and classifiers at an early stage of the generation of likely object regions. Finally, we identify and combine stable regions in ord...

Learning to Group Objects

Yanulevskaya, Victoria;Uijlings, Jasper Reinout Robertus;Sebe, Niculae
2014-01-01

Abstract

This paper presents a novel method to generate a hypothesis set of class-independent object regions. It has been shown that such object regions can be used to focus computer vision techniques on the parts of an image that matter most leading to significant improvements in both object localisation and semantic segmentation in recent years. Of course, the higher quality of class-independent object regions, the better subsequent computer vision algorithms can perform. In this paper we focus on generating higher quality object hypotheses. We start from an oversegmentation for which we propose to extract a wide variety of region-features. We group regions together in a hierarchical fashion, for which we train a Random Forest which predicts at each stage of the hierarchy the best possible merge. Hence unlike other approaches, we use relatively powerful features and classifiers at an early stage of the generation of likely object regions. Finally, we identify and combine stable regions in ord...
2014
IEEE Conference on Computer Vision and Pattern Recognition
Piscataway
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
9781479951178
Yanulevskaya, Victoria; Uijlings, Jasper Reinout Robertus; Sebe, Niculae
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/66993
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex 20
social impact