This paper presents a memory-based algorithm for global optimization of multivariate functions of continuous variables. The proposed algorithm, M-RASH, is based on the RASH (Reactive Affine Shaker) heuristic, an adaptive search algorithm based only on point-wise function evaluations. MRASH is an extension of RASH in which promising starting points for local search trails are suggested online by using Bayesian Locally Weighted Regression. Both techniques maintain memory about the previous history of the search to guide the future exploration, but in very different ways. RASH compiles the previous experience into the shape of a local search area where sample points are drawn, while locally-weighted regression saves the entire previous history to be mined extensively when an additional sample point is generated. Because of the high computational cost related to the regression model, it is applied only to evaluate the potential of an initial point for a local search run. The experimental r...

A memory-based RASH optimizer

Brunato, Mauro;Battiti, Roberto;Pasupuleti, Srinivas
2006-01-01

Abstract

This paper presents a memory-based algorithm for global optimization of multivariate functions of continuous variables. The proposed algorithm, M-RASH, is based on the RASH (Reactive Affine Shaker) heuristic, an adaptive search algorithm based only on point-wise function evaluations. MRASH is an extension of RASH in which promising starting points for local search trails are suggested online by using Bayesian Locally Weighted Regression. Both techniques maintain memory about the previous history of the search to guide the future exploration, but in very different ways. RASH compiles the previous experience into the shape of a local search area where sample points are drawn, while locally-weighted regression saves the entire previous history to be mined extensively when an additional sample point is generated. Because of the high computational cost related to the regression model, it is applied only to evaluate the potential of an initial point for a local search run. The experimental r...
2006
Proceedings of the AAAI-06 Workshop on Heuristic Search, Memory Based Heuristics and Their applications
Menlo Park
AAAI Press
9781577352907
Brunato, Mauro; Battiti, Roberto; Pasupuleti, Srinivas
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/62654
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact